翻訳と辞書 |
Browder–Minty theorem : ウィキペディア英語版 | Browder–Minty theorem In mathematics, the Browder–Minty theorem states that a bounded, continuous, coercive and monotone function ''T'' from a real, separable reflexive Banach space ''X'' into its continuous dual space ''X''∗ is automatically surjective. That is, for each continuous linear functional ''g'' ∈ ''X''∗, there exists a solution ''u'' ∈ ''X'' of the equation ''T''(''u'') = ''g''. (Note that ''T'' itself is not required to be a linear map.) ==See also==
* Pseudo-monotone operator; pseudo-monotone operators obey a near-exact analogue of the Browder–Minty theorem.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Browder–Minty theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|